

プラズマ溶射

プラズマ溶射

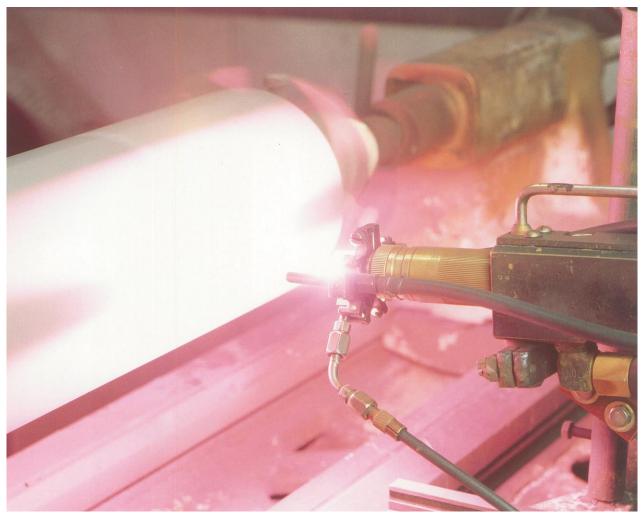
■特性

溶射皮膜は緻密で粒子間結合、付着力が強い。 溶射肌は滑らかで酸化物や不純物の混入も少ない。 またノズル近傍は高温でありますが、輻射によって急速に熱は発散し被溶射体は低温(200℃以下)に 保たれます。

<溶射材料>

組 成	主な特性	融点℃	熱膨張率 (×10 ⁻⁶ /℃)	硬さ
Ni-20%Cr	耐熱、高温耐食用	≒1400	15.0	Rc 30
W99.5%以上	不活性あるいは還元雰囲気中で耐高温	3380	4.5	Rc 20
Ta99.5%以上	高温用、鋼に自己結合	≑3000	6.5	Ra 40
Mo99.9%以上	耐摩耗、溶融Cu、鋼にも強くアークアブレージョンにも強い	≑2630	5.0 (20~100℃)	Rc 50
WC-12%Co	耐摩耗用(500℃以下)	1492 (軟化点1260以上)	6.0 (20~400℃)	Rc 55∼60
WC-17%Co	耐摩耗用(500℃以下)	1492 (軟化点1260以上)	6.0 (20~400℃)	Rc 55∼60
Cr ₃ C ₂ -25%NiCr	高温(540~800℃)における耐摩耗用	1890 (軟化点1400以上)	10.0 (150~800℃)	Rc 55
Al ₂ O ₃ -2.5%TiO ₂	耐熱、耐摩耗、溶融Zn、Al、Coに強い	≑2010	7.4 (20~1480℃)	Rc 55
Al ₂ O ₃	耐熱、耐摩耗、断熱、絶縁	≑2035	7.4 (20~1480℃)	Rc 60
Cr ₂ O ₃	540℃までの耐摩耗	2435	8.0 (20~1100℃)	Rc 65
Y ₂ O ₃	耐スポーリング性、反応防止	2400	9.0 (20~1000℃)	Rc 30
Cr ₂ O ₃ -5%SiO-3%TiO ₂	540℃までの耐摩耗	Cr ₂ O ₃ より若干低い	8.0 (20~1100℃)	Rc 70
ZrO ₂ -8%Y ₂ O ₃	断熱845℃以上での耐エロージョン	2535	9.7 (20~1300℃)	Rc 55
ZrO ₂ -20%Y ₂ O ₃	断熱845℃以上での耐エロージョン	2480	9.0 (20~1000℃)	Rc 54
ZrO ₂ -25%MgO	耐高温アブレージョン、溶融金属に濡れにくい	2140	8.7 (20~1000℃)	Rc 52
Ni-WC系 自溶合金	耐摩耗用	軟化点1040以上		Rc 65 (フューズ後)
5%Mo-5.5%Al-残Ni	鋼に自己結合	軟化点1650以上		Rb 80
Ni-5%Al	鋼に自己結合	≑1430	15.0	Rb 50
NiCoCrAlY	982℃までの耐熱、耐食	≒1400	16.0	Rc 30

ポンプスリーブ



内径施工 (ϕ 60)

プラズマ溶射

機能を与えるセラミックス

耐ビルドアップ、耐摩耗対策の一環として、 セラミックスまたはNi基の超合金溶射が適用されています。

印刷機のシリンダーは、耐食性を目的として、 高品質のプラズマ溶射が採用されています。

ボイラチューブ自動溶射施工

ハースロール